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ABSTRACT 

The continuous monitoring of fallen stock mortality in bovine farms has been demonstrated in different studies 
to have potential as an important component of veterinary syndromic surveillance. However, as far as we know, 
the usefulness of these systems to detect abnormal events in near real-time in the field has not been assessed. 
To implement this type of system, a number of challenges must be faced. The main difficulties are associated 
with the non-specific nature of fallen stock data, since multiple events may cause bovine mortality at farm level. 
Moreover, these data are originated from heterogeneous subpopulations that can be clustered and studied in 
accordance with different traits (e.g. production type, type of farm and/or individuals, husbandry and 
environmental conditions, or administrative level).  

In this study, we present the main pillars of a syndromic system to collect continuous fallen stock data from a 
specific region and to model time series and detect abnormal events at large and small scale.  

Keywords: Syndromic surveillance, Cattle, Fallen stock, Modelling, ARIMA, INAR. 

 

RESUME 

La mortalité enregistrée dans des élevages bovins a démontré dans différentes études avoir un potentiel 
important comme une composante de surveillance syndromique. Pourtant, l'usage de ces systèmes pour 
découvrir les événements anormaux en temps proche du réel n'a pas été évalué en pratique. Pour mettre en 
place ce type de système, un certain nombre de défis doivent être affrontés. Les difficultés principales sont 
associées à la nature non-spécifique de données, puisque de multiples événements peuvent provoquer de la 
mortalité bovine dans une ferme. De plus, ces données sont récoltées à partir de sous-populations hétérogènes 
qui peuvent être groupées et étudiées conformément à différents traits (par ex. le type de production, le type 
de ferme et/ou d’individus, les conditions d’élevage et de l'environnement, ou le niveau administratif).  
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…/.. 

Dans cette étude, nous présentons les éléments essentiels d'un système syndromique pour recueillir des 
données de mortalité bovine dans une région, modéliser des séries temporelles et détecter des évènements 
anormaux à grande et petite échelle. 

Mots-clés : surveillance syndromique, bovin, mortalité, modélisation, ARIMA, INAR. 

 

 

 

 
 

 

I - INTRODUCTION 

 

Fallen stock mortality in bovine farms has shown its 
potential as an important component of veterinary 
syndromic surveillance in different studies [Perrin et 
al., 2010, 2012; Dupuy et al., 2013; Alba et al., 
2015]. The continuous monitoring of bovine fallen 
stock data for syndromic surveillance may not only 
be used for the early detection of abnormal events, 
but may also serve as an indicator of cattle health at 
the population level. In addition, this kind of system 
can assess the impact of events occurred 
throughout a time period and its implementation 
may help to substantiate freedom from disease, 
thus increasing the confidence of trading partners. 
Moreover, its implementation provides valuable 
information for risk based surveillance. 

However, for such a system to achieve efficient 
operation, a number of challenges must be faced. 
Some difficulties are associated with the non-
specific nature of fallen stock data, since multiple 
events may cause bovine mortality at farm level. 
Furthermore, fallen stock data originate from 
dynamic and heterogeneous subpopulations that 
can be clustered and studied in accordance with 

different traits (e.g. production type, type of farm 
and/or individuals, husbandry and environmental 
conditions, or administrative level) and this adds 
complexity to the analysis [Perrin et al., 2010, 2012; 
Alba et al., 2015]. Moreover, the analysis of fallen 
stock at large-scale is able to detect events which 
happen across a wide geographical region. 
Nevertheless, to put in place efficient preventive 
and control measures the decision making process 
has to be frequently conducted at smaller spatial 
scale. For example, if an abnormal event occurs in a 
small region, the preventive or control measures 
should initially be allocated in this specific 
subpopulation, and thus it is important to detect 
early this event at this level. Accordingly, to build an 
efficient surveillance system, the data analysis 
should be conducted in parallel at different 
grouping and geographical levels.  

This paper proposes a novel strategy for the design 
of a syndromic surveillance system based on 
routinely collected data on fallen cattle, modelling 
and comparing time series at large and small scales. 

 

 

II - MATERIAL AND METHODS 

 

The system develops the following processes:  

1. Design of a data warehouse to integrate 
continuous data registered from bovine 
populations and associated fallen stock;  

2. Preliminary exploratory and descriptive 
analyses;  

3. Analyses of time series at regional and provincial 
levels for different bovine production types, 
using classical time series models such as 
autoregressive integrated moving average 
models; 
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4.  Analyses and plotting of hierarchical time series 
to explore simultaneously the mortality patterns 
at different geographical levels; and, finally,  

5. Analyses of time series at finer spatial scales 
(such as county or municipality) based on 
integer-valued autoregressive time series 
models of different orders.  

 

1. DATA USED  

The system incorporates two types of raw data: 
cattle farm demographics and cattle fallen stock 
data. In the system used as an example, both types 
of data are gathered under an agreement of strict 
confidentiality from the official animal health 

services. The cattle population (updated yearly) is 
recorded in an Excel spreadsheet and contains the 
following variables: a unique identifier for each 
farm, its type of production, its animal capacity, and 
its location defined in terms of region, province, 
county and municipality. The data relating to fallen 
stock is stored in an Access database which records 
the following fields: unique identifier for each farm, 
date of collection, and number of bovine carcasses 
collected. 

 

2. DATA WAREHOUSE STRUCTURE 

Figure 1 shows a scheme of the basic structure of 
this data warehouse system. 

 

Figure 1 

Structure of data warehouse system 

 

 

This structure is built using the base package of the 
software R [R Core Team, 2003] with R Studio as an 
integrated development environment [Van der Loo 
et al., 2012]. Two functions are combined to 
automate the processes. One function allows the 
importation and integration of the bovine 
population and fallen stock data into a unique 
dataset; while the other function filters, depurates 
and merges the data.  

 

3. EXPLORATORY and DESCRIPTIVE 
ANALYSES 

An initial exploratory analysis is conducted to 
identify a robust indicator of the cattle mortality 
from the available data. Moreover, this analysis 
aims to:  

1. Describe the bovine population coverage by the 
system,  

2. Extract the overall statistics of the bovine 
population and fallen stock for each production 
type at different spatial levels,  

3.  Identify those farms that will be part of the 
system, and  

4. Represent the time series plots at larger scales. 

In the current system it is proposed that, “the 
number of bovine carcasses collected by week for 
each production type at different spatial scale (i.e. 
region, province, county and municipality)” be 
selected as indicators of cattle mortality. In a 
previous study the same temporal and spatial units 
for each production type were used while the 
outcomes were the number of carcass disposal 
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visits conducted and the kilograms of carcasses 
collected at the farm level [Alba et al., 2015] 

 

4. AUTOREGRESSIVE INTEGRATED MOVING 
AVERAGE MODELS (ARIMA) TO BE USED AT 
LARGE SCALE 

ARIMA models have been demonstrated to provide 
good solutions to explore, predict events and 
provide evidence for the existence of irregularities 
in those time series that show regular patterns 
without including zeroes in the observations 
[Chatfield et al., 2004; Benshop et al., 2008; 
Cowpertwait et al., 2009; Alba et al., 2015]. In this 
sense, these models aim to identify and compare 
the historical baselines of bovine fallen stock for the 
main types of production at large spatial scales (e.g. 
at national, regional or province level). Moreover, 

using a previous adjustment of the model, it is easy 
to characterize the seasonality and trend of the 
series. This method, explained in more detail in Alba 
et al. [2015], comprises several steps. Firstly, the 
time series to be analysed is divided in two parts. 
One part of the data is used as training data to fit 
the model, and the rest is used as test data to 
validate the model. Secondly, to facilitate the fitting 
of the model, the possible seasonal patterns and/or 
trends are studied and adjusted in the training data 
by the least squares method using a multiple linear 
regression model. The coefficients of the 
seasonality are defined as trigonometric covariates 
in which the frequency ω is expressed as ω=2π/T 
and T is the value of the seasonal periodicity. This 
eventual trend is initially modeled as a linear 
pattern. The overall set of observations is expressed 
as Xt  (1)  

 

Xt = 𝜇 + 𝛼 cos(𝜔𝑡) + β sin(𝜔𝑡) + ⋯ + δ(t) + Yt       (1) 

 

Xt is composed by eventual seasonal components, 
expressed as trigonometric covariates 
such as α cos(ωt)or/and sin(ωt), an eventual 
trend component δ(t), and Yt that corresponds to 
the remaining ARIMA model. Thirdly, the respective 
orders of the components of the 
autoregressive/moving average processes are 

identified. The respective orders are determined 
based on corrected Akaike Information Criteria 
(AIC) and a diagnostic check that assesses the lack 
of autocorrelation and partial autocorrelation 
between the standardized residuals obtained. The 
remaining model Yt   is expressed as (2):  

 

 Yt = φ0 + φ1Yt−1 + ⋯ + φpYt−p + ⋯ + Zt  + θ1Zt−1 + ⋯ + θqZt−q   (2)
 

 

Where p is the order of the autoregressive part of 
the model and q indicates the order of the moving 
average part. 

Finally, using the model previously identified for 
each time series, a corresponding 95% confidence 
interval range is calculated for the next weeks, and 
a cross-validation process between the one-step 
ahead forecasts and the real observations is 
performed. 

 

5. HIERARCHICAL TIME SERIES AT DIFFERENT 
GEOGRAPHICAL LEVELS 

The method of hierarchical time series aims to 
explore simultaneously many series at different 
geographical levels, comparing baseline patterns 
for different subpopulations. This analysis also 
facilitates the identification of the spatial extend of 
irregular patterns previously detected at the 
regional level [Alba et al., 2015]. 

The hierarchical time series combine the 
information contained in two matrices. One matrix 
that contains the observations at the bottom-level 
(in our case: municipalities), and another matrix 
that contains information about the aggregation 
structure of the different spatial levels (called 
nodes) [Athanasopoulos et al., 2009; Hyndman et 
al., 2011, 2013] (see figure 2). 

These hierarchical time series are built using the 
‘hts’ package of R [Hyndman et al., 2011, 2013]. 

 

6. INTEGER-VALUED AUTORREGRESSIVE TIME 
SERIES MODELS OF DIFFERENT ORDERS TO 
MODEL TIME SERIES AT SMALLER SCALES 

The final models proposed in the system are the 
integer-valued autoregressive time series models of 
different orders, abbreviated as INAR(k). INAR 
models, based on discrete or count time series 
techniques, can be understood to be an extension 
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of the well-known AR models [Jung & Tremayne, 
2006]. The diagram below shows in a simple way 

the similarities between the AR (1) and the INAR (1) 
models:

AR (1) model              𝑋 𝑡 =   𝜌𝑋𝑡−1 +  𝑍 𝑡    𝑤𝑖𝑡ℎ  𝑍 𝑡 ~𝑁(µ, 𝜎2)              (4) 

INAR (1) model             𝑋 𝑡 =   𝜌𝜊𝑋𝑡−1 +  𝑊𝑡    𝑤𝑖𝑡ℎ 𝑊𝑡 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆)    (5) 

 
Figure 2 

Schematic diagram of the hierarchical time series structure proposed 

.  

 

In the AR(1) model, 𝜌𝑋𝑡−1 corresponds to the 
autoregressive part (AR), that indicates the degree 
of dependency between the consecutive 
observations of the series, and  𝑍 𝑡  is the random 
variable of the new events not explained by the 
previous observations. Whereas in the INAR(1) 
model, 𝜌𝜊𝑋𝑡−1 corresponds to a Binomial 
distribution with parameter 𝜌 ϵ (0, 1) linked to the 
previous number of observations by the binomial 
thinning operator, that is used to ensure the integer 
discreteness of the process. In our context 

𝜌𝜊𝑋𝑡−1would indicate the number of deaths that 
would be dependent on the previous events 
occurred at time t-1, and 𝑊𝑡 would correspond to 
the new death counts that would not be explained 
by the past and that would depend on the data set 
context. 𝑊𝑡  is fitted to a Poisson distribution. 

In the event of a generalized INAR(k) process, the 
model would be defined by means of a similar 
equation but now this equation is k times recurrent, 

 

                                            𝑋 𝑡 =   𝜌1𝜊𝑋𝑡−1 +  𝜌2𝜊𝑋𝑡−2 + ⋯ +  𝜌𝑘𝜊𝑋𝑡−𝑘 + 𝑊𝑡                      (6) 

 

In this model the seasonal and trend behaviour is 
not covered. To solve this question it is also 
assumed that these components can be expressed 
as functions of time and, using suitable functions, 
the parameters are estimated and adjusted 
following a similar process to that used in ARIMA 
models. The model selection uses the AIC criteria, 

evaluates the statistical significance of the 
parameters and validates its analysis. 

The model provides two types of forecasts: the 
future average behaviour of the series and the 
crude number of counts. The process followed for 
INAR is explained in detail by Fernandez-Fontelo et 
al. [2015]. 
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III - RESULTS 

 

To illustrate an example of the three modelling 
processes, time series of fallen stock data collected 
from dairy cattle between 2006 and 2013 have been 
modelled for a region, at different geographical 
levels. 

The following plot shows the time series of fallen 
stock in dairy cattle at the regional level and the 
manner in which this series was divided into a 
training data set and a test data set (see figure 3). 

 

Figure 3 

Time series plot of fallen stock collected in dairy cattle between 2006 and 2014 at the regional level 

 

The time series of dairy cattle at the regional level 
fits to a model ARIMA (1,0,1) and has an increased 

trend over time with half-yearly and yearly 
seasonality.  

Its mathematical model may be expressed as:        

Xt = 2 46.74 + 0.30t + 41.80 cos (
2πt

52
) −22.39sin (

2πt

52
) + 14.25cos (

2πt

26
)  + 28.95sin (

2πt

26
) + Yt             (7) 

     s.e.      6.26          0.03         3.73                      3.80                         2.99                        3.01         

                                                 s.e        0.07                    
0.10                     

                                                                (s.e.: standard 
errors) 

 

The diagnostic checking indicates the lack of 
autocorrelation and partial autocorrelation of the 
standardized residuals (see figure 4): 

The model predicts 374 carcasses on average during 
2013 within a range of 352 and 501. All of the actual 
observations are included within this range (see 
figure 5).  

The hierarchical time series plots of fallen stock for 
dairy cattle are shown in figure 6. These plots aims 

to compare the patterns observed at regional, 
provincial, county and municipality level.  

Finally, an INAR model is used with a previous 
adjustment of the seasonality and trend to model 
the fallen stock pattern in an area that contains few 
dairy cattle farms (see figures 7 and 8).  

In this case, the time series studies are fitted using 
an INAR (3) model expressed as: 

 

  𝑋 𝑡 =  0.13𝜊𝑋𝑡−1 + 0.10𝜊𝑋𝑡−2 + 0.09𝜊𝑋𝑡−3 + 𝑊â1(𝑡)              (9) 

â1(𝑡) = 𝑒−0.003−0.004𝑡+0.38𝑐𝑜𝑠(
2𝜋𝑡

52
)                                               (10) 

Its residuals are distributed as white noise according to the ACF and PACF profiles.  

                  Yt = 0.86Yt−1 + Zt − 0.72Zt−1                 (8) 
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Figure 4 

Autocorrelation and partial autocorrelation plots to ensure the independency of the residuals 

 

Figure 5 

Time series plot of fallen stock collected in dairy cattle between 2006 and 2012 and forecasts (average value 
and 95% confidence interval) and observed values in 2013 using an ARIMA (1,0,1) with trend and seasonality 

 

Figure 6 

Hierarchical time series at four levels based on the number of carcasses collected by week  
in dairy cattle farms. 

Level 0: region; Level 1: provinces; Level 2: Counties; Level 3: Municipalities. 
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Figure 7 

Time series plot of fallen stock for dairy cattle collected weekly in a small subpopulation 

 

 

Figure 8 

Time series plot of fallen stock collected in dairy cattle between 2007 and 2012 and forecasts (average value 
and 95% confidence interval) and observed values in 2013 using an INAR(3) with trend and seasonality 
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IV - DISCUSSION 

 
Although previous studies have described different 
models that might be used to incorporate cattle 
fallen stock as a component of syndromic 
surveillance, as far as we know, none have shown 
an ordered strategy as to how this might be adapted 
to different spatial scales. In this sense the present 
work proposes a novel approach that combines the 
weak and strong points of different models to 
integrate the analyses of time series arising from 
large or small subpopulations in a unique system. 

This study, in agreement with previous papers [Alba 
et al., 2015; Benshop et al., 2008], demonstrates the 
potential of ARIMA models to summarise historical 
patterns in a comprehensive manner in the event of 
regular series without zeros, which will tend to be 
the case for time series from large populations. 
These models are relatively easy to fit and may be 
useful to evidence the existence of irregularities. 
However, in the circumstance of small populations 
with irregular patters this approach is unlikely to be 
adequate.   

To complement the information provided by ARIMA 
models at different scales, the use of hierarchical 
time series is proposed. This approach may be very 
useful for decision making. The method allows for 
an assessment of mortality data at different spatial 
levels, and in the event of an abnormal event, to 
determine the extent of the abnormality and 
adequate preventive and control measures 
according to its extension. 

Finally, the system proposes the use of INAR (k) 
models to analyse fallen stock time series data with 
a high number of zeros or low counts. These models 
are applicable for small-scale analysis, and indeed, 
this is an important step forward for building a 
powerful syndromic surveillance system. However, 
it is important to state that fitting these models is 
challenging and further research should be 
conducted in order to automate their 
implementation [Fernandez-Fontelo et al., 2015; 
Moriña et al., 2011]. 

 

 

V - CONCLUSION 

 

This system provides information to identify 
populations at high risk, define the historical 
patterns of fallen stock in the populations studied, 
and evaluate changes in those patterns at the 
regional level. In addition, this work assesses the 
utility of alternative and novel methods to model 
and forecast the patterns of subpopulations at 
smaller scales, facilitating local intervention and the 
allocation of resources at this level. 

This system may provide useful information for 
decision making to allocate resources at different 
spatial levels and facilitate both central and local 
intervention. 

Further research should be conducted to: 

1. Identify specific causes of mortality peaks, and 
adequate thresholds for alarms,  

2. Remove abnormal events from basal patterns,  

3. Re-test and validate the novel algorithms, 

4. Transfer all this information within the 
veterinary services, 

5. Determine which decisions should best be made 
based on the information provided by the 
system.  
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