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GENERALIZED LINEAR MIXED MODELS APPLIED TO LARGE-SCALE SALMONELLA
DATA FOR DANISH BROILER FLOCKS

Chriél M.", Stryhn H.Z, Dauphin G.°

Dans cet article, nous présentons une étude épidémiologique rétrospective sur les facteurs de risque associés &
Salmonella typhimurium dans des élevages de poulets danois. Les données sur l'occurrence de salmoneiles
dans 3.500 élevages (en 1994) ont été extraites a partir d'une large base de données Ante Mortem. Des
informations sur chaque élevage ont été collectées par le vétérinaire avant 'abattage. D’autres informations
supplémentaires sur les stocks parentaux, les éclosoirs et sur la fabrication des aliments ont été également
recueillies. Les données sont analysées a l'aide des modéles linéaires généralisés mixtes (GLMM) avec un ou
plusieurs effets aléatoires.

Nous avons essayé d'autres modéles similaires aux GLMM : le modéle logistique binomial (EGRET), des
modeéles utilisant la quasi-vraisemblance (Macro SAS glimmix, MLn), des modeles utilisant l'approche GEE et
enfin I'approche bayesienne avec la méthode d’échantillonnage de Gibbs. Nous avons comparé les résultats et
tiré des conclusions sur les avantages et les inconvénients de ces différents modéles.

INTRODUCTION

In Denmark the occurrence of different types of salmonella in chicken has been a cause of concern of
the public health and of the producers in later years. In 1989 the Danish Poultry Council initiated a
programme to monitor the occurrence of salmonella which led to the establishment of the country-wide
ante-mortem database with data collected by the ante-mortem veterinarians, the slaughterhouses and the
National Veterinary Laboratory. A detailed description of the Danish production and control system is
given in Angen et al. (1996), a study on Salmonella enterica infections in the years 1992-93.

The present paper deals with occurrence of Salmonella typhimurium in 1994, and our main emphasis
here is on illustration and comparison of statistical models with random effects accessible for practical
analysis. The data comprise after some data reduction 3356 broiler flocks, the epidemiological units.
From each flock a sample was taken to determine its salmonella status. Further information about each
flock and the production facilities have been collected by the veterinarians prior to slaughtering, and also
information is available about the parent stocks, the hatcheries and the feed mills. The flocks were housed
in 631 production units (houses) distributed among 294 farmers. The data structure suggests therefore a
hierarchical model with (at least) two levels of random effects, the houses and the farmers. However, our
analysis showed only the variation between farmers to be of importance, and we present here — in order
to include a wider range of statistical approaches — results for models with only one random component.

The risk factors of the study were in the main the same as in Angen et al. (1996); we refer to this
paper for details and restrict ourselves here to those variables that turned out significant in the analy-
sis. For each flock the variables were recorded as follows: the occurrence of Salmonella typhimurium in
the parent flock (O=absent, 1=present), the hatchery (1,2,3), the use of (unspecified) medicine (0=not
recorded, 1=no, 2=yes), the season of hatching (1=Jan-Mar, 2=Apr-Jun, 3=Jul-Sep, 4=0ct-Dec), and
the sampling procedure which was altered by the National Veterinary Laboratory during the study period
(0=o0ld, 1=new). In brevity, in autumn 1994 a sampling scheme involving 60 faecal samples from each
flock replaced the previous ante-mortem analysis of 16 chicks per flock, the recent method being cheaper
and more sensitive to low prevalent Salmonella typhimurium infection.

STATISTICAL MODELS AND METHODS
The response y; for each flock (1) is the salmonella status, infected (y; = 1) or non-infected (y; = 0),
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as determined by the sampling procedure. In generalized linear models the probability p; = P(y; = 1)
is related to the explanatory variables via the link function, which in our context is (taken as) the logit
function, that is, logit(p) = In(p/(1 — p)). If X is the design matrix (an (n x p)-matrix where n is
the number of observations and p is the number of parameters), and 3 is the parameter vector for the
explanatory variables, the relationship takes the form

logit(p;) = Y5, %ijB, or in condensed notation: logit(p) = X5. 1)

An additiona] assumption of independent outcomes y; leads to a standard logistic regression model for
which maximum likelihood (ML) estimation is feasible. Also, we can incorporate an overdispersion para-
meter into the model to compensate for the fact that the variation in the data may be larger than the
binomial variation, and estimate parameters by the quasi-likelihood method (McCullagh & Nelder, 1989).

Overdispersion is often caused by clustering, and if potential clusters are known it is usually of interest
to model their effect more explicitly as random effects, in a generalized linear mixed model (GLMM).
There is an exhaustive and rapidly developing literature on GLMM’s; some recent reviews are Breslow
& Clayton (1992) and Lee & Nelder (1996). In this paper we compare five models of GLMM type. All
analyses can be carried out using statistical software packages.

Addition of a random effect of farmers to model (1) yields

logit(p;) = 22?:0 z;;8; + 0 Utarm(i) » (2)

where ¢ > 0 and u1, ..., ug94 are random variables describing the effects of individual farmers. Usually
these are assumed to be Gaussian N (0, 1). ML estimation is computationally demanding because the like-
lihood function involves an integration over the random effects which must be approximated numerically.
Therefore it has been suggested to replace the Gaussian distribution by a discrete distribution, namely
the binomial distribution. The program EGRET (SERC, 1989) gives a ML analysis of this model.

Alternatively, analysis of model (2) can be based on a weighted least squares principle, where the
equations used often are given a pseudo- or quasilikelihood motivation. Many variants — and acronyms
— exist and there seems to be no clear answer to which one is preferable, neither on theoretical or
practical grounds. In practice, the results are often quite similar. We have used the PQL procedure of
Breslow & Clayton (1992) which has been implemented in the SAS macro glimmix (Littell et al., 1996).

Random effects models like (2) are sometimes termed subject-specific because they contain random
terms for each “individual” (farmer) of the population, as opposed to marginal or population-averaged
models for probabilities p; averaged over the population. The difference between the two types of models
can maybe most easily be understood by the different interpretation of the regression coefficient 8 for
an explanatory variable, e.g. the use of medicine. In the subject-specific model 3 describes the effect
of medicine on the probability of salmonella infection for individual flocks and farmers, whereas in the
population-averaged model it describes the effect on the salmonella infection rate for the entire population.
Which of the two approaches is more appropriate depends on the context. We have analysed the present
data by the (marginal) MQL approach using the MLn program developed by Goldstein and co-workers
(Goldstein, 1995). It should be noted that this program, as well as the glimmix macro, allow for both
MQL and PQL estimation.

A related marginal approach based on generalized estimating equations (GEE; Liang & Zeger, 1986)
allows for dependence within clusters without assuming it of a specific form as in (2). It has recently
been implemented in the SAS system (vers. 6.12) and is also available in the statistical package S—Plus.

Finally, we have tried a Bayesian approach, where parameters are not treated as unknown constants
but as themselves random variables, involving Gibbs sampling from the posterior distribution (Gilks et
al., 1993) using the BUGS and CODA programs.

RESULTS

Table 1 below gives parameter estimates with standard errors for the same modelling of explanatory
variables in the five models described above. For comparison all analyses are without an additional
overdispersion parameter (available in SAS—glimmix and in MLn), except for GEE where its estimated
value was very close to one. Estimates in SAS-glimmix indicated underdispersion which we tend to
regard as an artifact. Noninformative prior distributions were used for the Bayesian model.

The interaction between the factors Hatchery and Medicine caused estimation problems with all meth-
ods except GEE due to two cells in their cross-table without cases. Parameter estimates on the logistic
scale were negative and large, and the standard errors were clearly useless and have been omitted. In
the EGRET and MLn programs adjustments to the convergence criteria were necessary for convergence,
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and the glimmix macro failed to converge unless large negative values were forced into the corresponding
cells using the offset option.

We focus here on comparing the methods and leave the epidemiological interpretation, to be reported
elsewhere, largely for the reader. In the table, regression parameter estimates are in good agreement
between the methods. On the other hand, the estimates of the random effect differ somewhat. The GEE
method 1s clearly less influenced by the cells without cases than the other methods. Also the standard
errors are generally slightly larger, indicating a minor loss of precision (Liang & Zeger, 1986).

Our experience of the reliability of the estimation procedures is that the GEE and Bayesian procedures
are more stable than the others. We found, however, the recent version of glimmix (vers. 6.12) more stable
than previous ones. For even larger data sets the MLn program and GEE method seem most promising.
As to the flexibility of the models and software, the MLn and BUGS programs can handle hierarchical
models with several random effects. Properly speaking, this applies to the glimmix macro also, however
at the present data size the computational demands seem disencouraging. The GEE method and the
implementation of ML estimation in EGRET are limited to a single random component. A final remark
is that a comparison of the methods should also include statistical testing, e.g. accuracy and power of tests.

Table 1: Parameter estimates & standard errors for different statistical analyses of salmonella data (see
text). Values for Bayesian analysis are means and standard deviations from a Gibbs sample of size 2000
after a burn-in of 500 iterations. (* glimmix macro, 2 genmod procedure.)

Statistical method and program used
ML PQL MQL GEE Bayesian

Effect Level EGRET SAS! MLn SAS? BUGS
Intercept -226£0.16 | -2.15+£0.15 | -2.11+0.15 | -2.13+£0.16 | -2.27+0.16
Season 1 -0.11+0.16 | -0.11+0.16 | -0.11+0.16 | -0.10x+0.18 | -0.12+0.16

2 -0.25+£0.17 | -0.24+£0.16 | -0.24+0.16 | -0.23+£0.20 | -0.25+£0.15

3 -1.17+£0.31 | -1.144+0.31 | -1.13+0.30 | -1.09+£0.30 { -1.17£0.30
Sampling 1 261+032) 253031 249+031| 247+£030| 2.63+£0.31
Medicine 0 -0.70+0.31 | -0.68+0.31 | -0.67+0.31 | -0.69£0.35 | -0.74+£0.29

2 -1.474+034 | -143+0.33 | -141£0.34 | -1.494+0.42 | -1.54£0.34
Parent-Typh 1 086018 | 083+0.17| 0.82+0.17| 0.82+0.20| 0.87+0.18
Hatchery 1 059+0.17 | 056+£0.17 | 0.55+0.17| 0.57+£0.18 | 0.58=%0.17

2 -2.03+0.33 | -1.98+0.33 | -1.97+0.33 | -1.95+£0.48 | -2.11+0.33
Med xParT  (0,1) 0.12+0.32( 011+£0.32] 0.11x0.32 | 0.11+£0.37 | 0.10+0.32

(2,1) 148+£058 | 144+057 | 142£058) 1494066 | 1.52+0.60
Med xHat (0,1) 1.18+0.38 | 1.14+0.37 | 1.13+£037| 1.14+045| 1.241+0.36

(0,2) || -16.2 -10.6 -15.8 -3.58+0.82 | -78.6

(2,1) || -0.25+0.57 | -0.24+0.56 | -0.24+0.57 | -0.23+0.65 | -0.24 + 0.58

(2,2) || -14.9 -9.4 -14.9 -2.36+0.65 | -78.7
o 061+0.10| 0.34 0.35+0.10 — 0.63+0.11
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